Calculator

2011 #1.

For $0 \le t \le 6$, a particle is moving along the x-axis. The particles position, x(t), is not explicitly given. The velocity of the particle is given by $v(t) = 2\sin(e^{t/4}) + 1$.

Find the total distance traveled by the particle from $0 \le t \le 6$,

- Water is pumped out of a lake at the rate $R(t) = 12\sqrt{\frac{t}{t+1}}$ cubic meters per minute, where t is measured in minutes. How much water is pumped from time t = 0to t = 5?
 - A) 9.439 cubic meters
 - B) 10.954 cubic meters
 - C) 43.816 cubic meters
 - D) 47. 93 cubic meters
 - E) 54.772 cubic meters

- An object traveling in a straight line has position x(t) at time $t \ge 0$. If the initial position (s x(0) = 2 and the velocity of the object is $v(t) = \sqrt[3]{1+t^2}$, what is the position of the object at time t = 3?
 - A) .431 B) 2.154 C) 4.512

- E) 17.408

CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 7: Application of Definite Integrals 7.2: Area

What you'll Learn About

- Finding the area between 2 curves
 - A) Find the area between the curve $y = \sqrt{x}$ and the x-axis from [0, 1].

$$A = \int_{0}^{1} x^{1/2} dx = \frac{2}{3} x^{3/2} \Big|_{0}^{1} = \frac{2}{3}$$

B) Find the area between the curve $y = x^2$ and the x-axis from [0, 1].

$$A = \int_{0}^{1} x^{2} dx = \frac{1}{3}x^{3}\Big|_{0}^{1} = \frac{1}{3}$$

C) Find the area between the curves $y = x^2$ and $y = \sqrt{x}$

$$\frac{1}{A} = \frac{1}{x^{1/2}} \times \frac{1}{A} = \frac{1}{x$$

 $A = \int_{0}^{1} (x dx - \int_{0}^{1} x^{2} dx)$ Top lurve - Bottom lurve $A = \int_{0}^{1} (\sqrt{x} - x^{2}) dx = \frac{1}{3}$

$$A = \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{1}{2} x c^{2} + -(-4 \sin^{2} t) dt$$

$$A = \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{1}{2} x c^{2} + -(-4 \sin^{2} t) dt$$

$$A = 4.188$$

$$y = -4\sin^2 t$$

Equations everything 4 Find the area of the shaded region.

$$A = \frac{10}{3}y^3 - 3y^4 + y^2 = \frac{10}{3} - 3 + 1 = \frac{4}{3}$$